博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
PMM 对MYSQL 的监控配制
阅读量:6242 次
发布时间:2019-06-22

本文共 6746 字,大约阅读时间需要 22 分钟。

 
系统选择: centos 7.2
    关闭防火墙:
    systemctl stop firewalld.service
    systemctl disable firewalld.service
    起用转发:
    # vi /usr/lib/sysctl.d/00-system.conf
    添加如下代码:
    net.ipv4.ip_forward=1
    重启network服务
    # systemctl restart network
    查看是否修改成功
    # sysctl net.ipv4.ip_forward
    如果返回为“net.ipv4.ip_forward = 1”则表示成功了
   
pmm-server 安装:
   pmm官方文档:

    Pmm 组成: https://www.percona.com/doc/percona-monitoring-and-management/architecture.html

    PMM 安装: https://www.percona.com/doc/percona-monitoring-and-management/deploy/server/docker.html#run-server-docker

    相关开源项目:

      https://www.sqlite.org/atomiccommit.html
      https://github.com/prometheus

 
  1.安装DOCKER,RPM包的名字是docker-io
     yum install docker -y
 
   2.启动docker
     service docker start
     ps -ef |grep docker
 
   3.创建容器的数据磁盘
     docker create \
     -v /opt/prometheus/data \
     -v /opt/consul-data \
     -v /var/lib/mysql \
     -v /var/lib/grafana \                    
     --name pmm-data \
     docker.io/percona/pmm-server /bin/true   
     //默认本地不存pmm-server,会从官网下载 ,但是会很慢
   
    容器卷在宿主机的目录位置:
    docker inspect pmm-data
 
   
    "Mounts": [
            {
                "Name": "134874af6736c9065c504d084eb0b754507da23a212cd90524d35463dcff8c54",
                "Source": "/var/lib/docker/volumes/134874af6736c9065c504d084eb0b754507da23a212cd90524d35463dcff8c54/_data",
                "Destination": "/var/lib/mysql",
                "Driver": "local",
                "Mode": "",
                "RW": true,
                "Propagation": ""
            },
            {
                "Name": "3d03268806f49143f8051aefc8ebef047ceeeeea24c5fe2828e06e0b08b36f6e",
                "Source": "/var/lib/docker/volumes/3d03268806f49143f8051aefc8ebef047ceeeeea24c5fe2828e06e0b08b36f6e/_data",
                "Destination": "/opt/consul-data",
                "Driver": "local",
                "Mode": "",
                "RW": true,
                "Propagation": ""
            },
            {
                "Name": "47dde5e315f8123018a485d8a922d060761a508b9958bc5e8c38f4b934152321",
                "Source": "/var/lib/docker/volumes/47dde5e315f8123018a485d8a922d060761a508b9958bc5e8c38f4b934152321/_data",
                "Destination": "/opt/prometheus/data",
                "Driver": "local",
                "Mode": "",
                "RW": true,
                "Propagation": ""
            },
            {
                "Name": "4faad60a6619be2f2aa29c34dd8630427cd70810d849a21bc26733b3970dfb6b",
                "Source": "/var/lib/docker/volumes/4faad60a6619be2f2aa29c34dd8630427cd70810d849a21bc26733b3970dfb6b/_data",
                "Destination": "/var/lib/grafana",
                "Driver": "local",
                "Mode": "",
                "RW": true,
                "Propagation": ""
            }
        ],
   
  4.创建容器的运行实例:
    docker run -d \
    -p 80:80 \
    --volumes-from pmm-data \
    --name pmm-server \
    --restart always \
    percona/pmm-server:1.2.0
   
 
    容器卷在宿主机的目录位置:
 
     docker inspect pmm-server
     "Mounts": [
            {
                "Name": "47dde5e315f8123018a485d8a922d060761a508b9958bc5e8c38f4b934152321",
                "Source": "/var/lib/docker/volumes/47dde5e315f8123018a485d8a922d060761a508b9958bc5e8c38f4b934152321/_data",
                "Destination": "/opt/prometheus/data",
                "Driver": "local",
                "Mode": "",
                "RW": true,
                "Propagation": ""
            },
            {
                "Name": "4faad60a6619be2f2aa29c34dd8630427cd70810d849a21bc26733b3970dfb6b",
                "Source": "/var/lib/docker/volumes/4faad60a6619be2f2aa29c34dd8630427cd70810d849a21bc26733b3970dfb6b/_data",
                "Destination": "/var/lib/grafana",
                "Driver": "local",
                "Mode": "",
                "RW": true,
                "Propagation": ""
            },
            {
                "Name": "134874af6736c9065c504d084eb0b754507da23a212cd90524d35463dcff8c54",
                "Source": "/var/lib/docker/volumes/134874af6736c9065c504d084eb0b754507da23a212cd90524d35463dcff8c54/_data",
                "Destination": "/var/lib/mysql",
                "Driver": "local",
                "Mode": "",
                "RW": true,
                "Propagation": ""
            },
            {
                "Name": "3d03268806f49143f8051aefc8ebef047ceeeeea24c5fe2828e06e0b08b36f6e",
                "Source": "/var/lib/docker/volumes/3d03268806f49143f8051aefc8ebef047ceeeeea24c5fe2828e06e0b08b36f6e/_data",
                "Destination": "/opt/consul-data",
                "Driver": "local",
                "Mode": "",
                "RW": true,
                "Propagation": ""
            }
        ],
 
    更改面板数据sqlite库存储类型为MYSQL(容器自带)
    [root@workstation2017 ~]# docker exec -i -t pmm-server /bin/bash
    [root@86b5c5955521 opt]# vi /etc/grafana/grafana.ini
     查/sqlite 改为MYSQL 存储
     type=mysql
     host=127.0.0.1:3306
     name=grafana
     user=root
     password =
     在容器进入mysql客户端,创建数据库grafana,
     create database grafana;
    
     生效:
     docker restart pmm-server
    // 默认面板监控数据数据保在  /var/lib/grafana/grafana.db  
 
PMM client 安装:
    [root@workstation2017 ~]# service mysql start
    Redirecting to /bin/systemctl start  mysql.service
    下载与PMM SERVER 一致的 PMM client
    https://www.percona.com/downloads/pmm-client/
 
  
    配制:
    [root@workstation2017 ~]# pmm-admin config --server 192.168.79.220
    OK, PMM server is alive.
    PMM Server      | 192.168.79.220
    Client Name     | workstation2017
    Client Address  | 192.168.79.220
 
 
   开始监控:
    pmm-admin add mysql --query-source perfschema  --user root --password xx
  
  
    WEB访问页面并配制相关值:
    http://192.168.79.220/graph
 
    data sources--->edit data source
       config:
          填入:
          name:prometheus
          type:prometheus
       http settings:加入
          http://127.0.0.1:9090/prometheus
    dashboards-->import
    点选导入import json文件
   
操作目的:监控指定的Metrics,减少系统的统计负载,并采用MYSQL作为存储后端  
详细操作如下:
json文件容器导出到宿主机的目录上,并在WEB 面板中导入
[root@f3e8318c8d7c dashboards]# pwd
/usr/share/percona-dashboards/dashboards
[root@f3e8318c8d7c dashboards]# ls
Amazon_RDS_OS_Metrics.json    MongoDB_Overview.json               MySQL_Performance_Schema.json      Prometheus.json
Cross_Server_Graphs.json      MongoDB_ReplSet.json                MySQL_Query_Response_Time.json     ProxySQL_Overview.json
Disk_Performance.json         MongoDB_RocksDB.json                MySQL_Replication.json             Summary_Dashboard.json
Disk_Space.json               MongoDB_WiredTiger.json             MySQL_Table_Statistics.json        System_Overview.json
MariaDB.json                  MySQL_InnoDB_Metrics.json           MySQL_TokuDB_Metrics.json          Trends_Dashboard.json
MongoDB_Cluster_Summary.json  MySQL_InnoDB_Metrics_Advanced.json  MySQL_User_Statistics.json
MongoDB_InMemory.json         MySQL_MyISAM_Metrics.json           PXC_Galera_Cluster_Overview.json
MongoDB_MMAPv1.json           MySQL_Overview.json                 PXC_Galera_Graphs.json
 
拷到宿主机的目录中:
[root@workstation2017 ~]# docker cp f3e8318c8d7c:/usr/share/percona-dashboards/dashboards /soft/
然后用XSHELL 拷到WINDOW目录下
在主机WEB界面中
在导入框中加入MySQL_InnoDB_Metrics.json
dashboard ---> import---> MySQL_InnoDB_Metrics.json
即可全部配制完成
 
 
PMM-SERVER 与 PMM-CLIENT 互联检测
   gui: http://192.168.79.220:80/prometheus/targets
   command: pmm-admin check-network
            pmm-admin list
EG:
[root@workstation2017 ~]#   pmm-admin check-network
PMM Network Status
Server Address | 192.168.79.220
Client Address | 192.168.79.220
* System Time
NTP Server (0.pool.ntp.org)         | 2017-07-24 22:57:08 -0400 EDT
PMM Server                          | 2017-07-25 02:57:08 +0000 GMT
PMM Client                          | 2017-07-24 22:57:08 -0400 EDT
PMM Server Time Drift               | OK
PMM Client Time Drift               | OK
PMM Client to PMM Server Time Drift | OK
* Connection: Client --> Server
-------------------- -------     
SERVER SERVICE       STATUS      
-------------------- -------     
Consul API           OK
Prometheus API       OK
Query Analytics API  OK
Connection duration | 465.152µs
Request duration    | 1.000382ms
Full round trip     | 1.465534ms
* Connection: Client <-- Server
-------------- ---------------- --------------------- ------- ---------- ---------
SERVICE TYPE   NAME             REMOTE ENDPOINT       STATUS  HTTPS/TLS  PASSWORD
-------------- ---------------- --------------------- ------- ---------- ---------
linux:metrics  workstation2017  192.168.79.220:42000  OK      YES        -       
mysql:metrics  workstation2017  192.168.79.220:42002  OK      YES        -   
 

转载地址:http://xhsia.baihongyu.com/

你可能感兴趣的文章
Ajax 跨域,这应该是最全的解决方案了
查看>>
vs2010下release版本调试设置
查看>>
Windows连接Linux虚拟机里面的Docker容器
查看>>
MYSQLDUMP参数详解(转)
查看>>
SLA
查看>>
MyProject / FuzzyPages | Elias的个人主页
查看>>
三子棋局-挑战你的逻辑思维
查看>>
Linux 安装 MySQL / MySQL 主从备份
查看>>
python调用linux shell脚本,并返回结果一例
查看>>
IT的一些常识
查看>>
无边框Winform 简单实现拖动
查看>>
潜移默化学会WPF--Border,焦点移动
查看>>
css解决span宽度问题
查看>>
调频广播六十年
查看>>
android sdk 如何重新生成debug.keystore
查看>>
黑马程序员-JAVA基础-练习之存储学生信息
查看>>
基于FPGA的跨时钟域信号处理——同步设计的重要
查看>>
【SAP HANA】关于SAP HANA中Analytic View创建、激活状况下在系统中生成对象的研究...
查看>>
ubuntu 12.04 ubuntu System program problem detected 解决方法
查看>>
c++智能指针《一》 auto_ptr
查看>>